393 research outputs found

    Visibility maintenance via controlled invariance for leader-follower Dubins-like vehicles

    Full text link
    The paper studies the visibility maintenance problem (VMP) for a leader-follower pair of Dubins-like vehicles with input constraints, and proposes an original solution based on the notion of controlled invariance. The nonlinear model describing the relative dynamics of the vehicles is interpreted as linear uncertain system, with the leader robot acting as an external disturbance. The VMP is then reformulated as a linear constrained regulation problem with additive disturbances (DLCRP). Positive D-invariance conditions for linear uncertain systems with parametric disturbance matrix are introduced and used to solve the VMP when box bounds on the state, control input and disturbance are considered. The proposed design procedure is shown to be easily adaptable to more general working scenarios. Extensive simulation results are provided to illustrate the theory and show the effectiveness of our approachComment: 17 pages, 24 figures, extended version of the journal paper of the authors submitted to Automatic

    Uncalibrated Visual Compass from Omnidirectional Line Images with Application to Attitude MAV Estimation

    No full text
    International audienceThis paper presents a new algorithm based on previous results of the authors, for the estimation of the yaw angle of an omnidirectional camera robot undergoing a 6-DoF rigid motion. Our real-time algorithm is uncalibrated, robust to noisy data, and it only relies on the projection of 3-D parallel lines as image features. Numerical and real-world experiments conducted with an eye-in-hand robot manipulator, which we used to simulate the 3-D motion of a Micro unmanned Aerial Vehicle (MAV), show the accuracy and reliability of our estimation algorithm

    On Grasp Quality Measures: Grasp Robustness and Contact Force Distribution in Underactuated and Compliant Robotic Hands

    Get PDF
    The availability of grasp quality measures is fundamental for grasp planning and control, and also to drive designers in the definition and optimization of robotic hands. This work investigates on grasp robustness and quality indexes that can be applied to power grasps with underactuated and compliant hands. When dealing with such types of hands, there is the need of an evaluation method that takes into account the forces that can be actually controlled by the hand, depending on its actuation system. In this paper, we study the potential contact robustness and the potential grasp robustness (PCR, PGR) indexes. They both consider main grasp properties: contact points, friction coefficient, etc., but also hand degrees of freedom and consequently, the directions of controllable contact forces. The PCR comes directly from the classical grasp theory and can be easily evaluated, but often leads to too conservative solutions, particularly when the grasp has many contacts. The PGR is more complex and computationally heavier, but gives a more realistic, even if still conservative, estimation of the overall grasp robustness, also in power grasps. We evaluated the indexes for various simulated grasps, performed with underactuated and compliant hands, and we analyzed their variations with respect to the main grasp parameters

    Cutaneous Force Feedback as a Sensory Subtraction Technique in Haptics

    Full text link
    A novel sensory substitution technique is presented. Kinesthetic and cutaneous force feedback are substituted by cutaneous feedback (CF) only, provided by two wearable devices able to apply forces to the index finger and the thumb, while holding a handle during a teleoperation task. The force pattern, fed back to the user while using the cutaneous devices, is similar, in terms of intensity and area of application, to the cutaneous force pattern applied to the finger pad while interacting with a haptic device providing both cutaneous and kinesthetic force feedback. The pattern generated using the cutaneous devices can be thought as a subtraction between the complete haptic feedback (HF) and the kinesthetic part of it. For this reason, we refer to this approach as sensory subtraction instead of sensory substitution. A needle insertion scenario is considered to validate the approach. The haptic device is connected to a virtual environment simulating a needle insertion task. Experiments show that the perception of inserting a needle using the cutaneous-only force feedback is nearly indistinguishable from the one felt by the user while using both cutaneous and kinesthetic feedback. As most of the sensory substitution approaches, the proposed sensory subtraction technique also has the advantage of not suffering from stability issues of teleoperation systems due, for instance, to communication delays. Moreover, experiments show that the sensory subtraction technique outperforms sensory substitution with more conventional visual feedback (VF)

    Exploiting a Wearable Extra-Finger for Haptic Applications

    Get PDF
    This extended abstract presents the design of a wearable device for haptic stimulation of hand palms and phalanges. Most of the wearable haptic devices for hand palms are based on a parallel structure, that guarantees good precision and stiffness but presents workspace limitations and encumbrance problems. In this work, we improve the design of a wearable extra-finger, previously designed to augment human hands and to provide assistance for people affected by hand and upper-limb diseases to apply as a haptic device. To employ this device for haptics applications, we provided it an additional adduction/abduction degree of freedom and we modified the fingertip/end-effector to include a micro force sensor

    Cooperative human-robot haptic navigation

    No full text
    International audienceThis paper proposes a novel use of haptic feedback for human navigation with a mobile robot. Assuming that a path-planner has provided a mobile robot with an obstacle-free trajectory, the vehicle must steer the human from an initial to a desired target position by only interacting with him/her via a custom-designed vibro-tactile bracelet. The subject is free to decide his/her own pace and a warning vibrational signal is generated by the bracelet only when a large deviation with respect to the planned trajectory is detected by the vision sensor on-board the robot. This leads to a cooperative navigation system that is less intrusive, more flexible and easy-to-use than the ones existing in literature. The effectiveness of the proposed system is demonstrated via extensive real-world experiments

    KCT: a MATLAB toolbox for motion control of KUKA robot manipulators

    Full text link
    Abstract—The Kuka Control Toolbox (KCT) is a collection of MATLAB functions for motion control of KUKA robot manipulators, developed to offer an intuitive and high-level programming interface to the user. The toolbox, which is compatible with all 6 DOF small and low payload KUKA robots that use the Eth.RSIXML, runs on a remote computer connected with the KUKA controller via TCP/IP. KCT includes more than 30 functions, spanning operations such as forward and inverse kinematics computation, point-to-point joint and Cartesian control, trajectory generation, graphical display and diagnostics. The flexibility, ease of use and reliability of the toolbox is demonstrated through two applicative examples. I

    Modeling Compliant Grasps Exploiting Environmental Constraints

    Get PDF
    In this paper we present a mathematical framework to describe the interaction between compliant hands and environmental constraints during grasping tasks. In the proposed model, we considered compliance at wrist, joint and contact level. We modeled the general case in which the hand is in contact with the object and the surrounding environment. All the other contact cases can be derived from the proposed system of equations. We performed several numerical simulation using the SynGrasp Matlab Toolbox to prove the consistency of the proposed model. We tested different combinations of compliance as well as different reference inputs for the hand/arm system considered. This work has to be intended as a tool for compliant hand designer since it allows to tune compliance at different levels before the real hand realization. Furthermore, the same framework can be used for compliant hand simulation in order to study the interaction with the environmental constrains and to plan complex manipulation tasks

    Analysis of postures for handwriting on touch screens without using tools

    Get PDF
    The act of handwriting affected the evolutionary development of humans and still impacts the motor cognition of individuals. However, the ubiquitous use of digital technologies has drastically decreased the number of times we really need to pick a pen up and write on paper. Nonetheless, the positive cognitive impact of handwriting is widely recognized, and a possible way to merge the benefits of handwriting and digital writing is to use suitable tools to write over touchscreens or graphics tablets. In this manuscript, we focus on the possibility of using the hand itself as a writing tool. A novel hand posture named FingerPen is introduced, and can be seen as a grasp performed by the hand on the index finger. A comparison with the most common posture that people tend to assume (i.e. index finger-only exploitation) is carried out by means of a biomechanical model. A conducted user study shows that the FingerPen is appreciated by users and leads to accurate writing traits
    • …
    corecore